How do you integrate ((4-x^2)^(1/2)) / x^2(4−x2)12x2?
1 Answer
Keeping trigonometric substitution in mind, the numerator is of the form:
sqrt(a^2 - x^2)√a2−x2
which resembles
With this substitution, we get:
= int (cancel(2)costheta)/(cancel(4)sin^2theta) cancel(2)costhetad theta
= int cot^2thetad theta
= int csc^2theta - 1d theta
since
The derivative of
= -int 1-csc^2thetad theta
= -(int d theta - intcsc^2thetad theta)
= -(int d theta + int-csc^2thetad theta)
= -int d theta - int-csc^2thetad theta
= -theta - cottheta
With
So the final answer is:
= color(blue)(-arcsin(x/2) - sqrt(4-x^2)/x + C)