How do you integrate ((4-x^2)^(1/2)) / x^2(4x2)12x2?

1 Answer
Aug 24, 2015

Keeping trigonometric substitution in mind, the numerator is of the form:

sqrt(a^2 - x^2)a2x2

which resembles sqrt(1-sin^2x)1sin2x. Thus, let:

x = asinthetax=asinθ where a = 2a=2
=> x = 2sinthetax=2sinθ
x^2 = a^2sin^2theta = 4sin^2thetax2=a2sin2θ=4sin2θ
sqrt(4-x^2) = sqrt(2^2-2^2sin^2theta) = 2costheta4x2=2222sin2θ=2cosθ
dx = 2costhetad thetadx=2cosθdθ

With this substitution, we get:

= int (cancel(2)costheta)/(cancel(4)sin^2theta) cancel(2)costhetad theta

= int cot^2thetad theta

= int csc^2theta - 1d theta

since 1 + cot^2theta = csc^2theta, just like how 1 + tan^2theta = sec^2theta.

The derivative of cottheta is -csc^2theta, so with some negative-sign manipulation, we can get this into a more simplified form:

= -int 1-csc^2thetad theta

= -(int d theta - intcsc^2thetad theta)

= -(int d theta + int-csc^2thetad theta)

= -int d theta - int-csc^2thetad theta

= -theta - cottheta

With x = 2sintheta and sqrt(4-x^2) = 2costheta:

=> theta = arcsin(x/2)
=> cottheta = costheta/sintheta = (sqrt(4-x^2)/cancel(2))(cancel(2)/x)
= sqrt(4-x^2)/x

So the final answer is:

= color(blue)(-arcsin(x/2) - sqrt(4-x^2)/x + C)