How do you integrate int 1/sqrt(9x^2-18x+18) using trigonometric substitution?

1 Answer
Mar 1, 2016

=1/3sinh^-1(x-1)+C

Explanation:

First of all, we complete the square/ re write in vertex form the quadratic under the square root:

9x^2-18x+18
=9(x^2-2)+18
=9(x-1)^2+9

So the integral can be re written as:

int1/sqrt(9(x-1)^2+9)dx=1/3int1/sqrt((x-1)^2+1)dx

(Note the 9 under the square root has been factored out to the front)

Now consider the substitution sinh(u)=x-1
It will follow that cosh(u)du=dx

Now substitute this into the integral to get:

1/3intcosh(u)/sqrt(sinh^2(u)+1)dx

Use the identity: cosh^2(u)-sinh^2(u)=1 to re write the bottom as:

1/3intcosh(u)/sqrt(cosh^2(u))dx=1/3intcosh(u)/cosh(u)du = 1/3intdu

Now evaluating the integral and reversing the substitution:

1/3u +C
=1/3sinh^-1(x-1)+C