How do you findx32x2+4dx using trigonometric substitution?

1 Answer
Jun 4, 2018

x32x2+4dx=(x24)2x2+46+C

Explanation:

You do not really need to use trigonometric substitutions.
As:

ddx(2x2+4)=2x2x2+4

we can integrate by parts:

x32x2+4dx=x22ddx(2x2+4)dx

x32x2+4dx=x22x2+42ddx(x22)2x2+4dx

x32x2+4dx=x22x2+42x2x2+4dx

Solve the resulting integral by substitution:

t=2x2+4

dt=4xdx

x2x2+4dx=14tdt

x2x2+4dx=14t3232+C=16tt+C

and undoing the substitution:

x2x2+4dx=x2+232x2+4+C

Putting the results together:

x32x2+4dx=x22x2+42x2+232x2+4+C

and simplifying:

x32x2+4dx=(x22x2+23)2x2+4+C

x32x2+4dx=(3x22x24)2x2+46+C

x32x2+4dx=(x24)2x2+46+C