How do you integrate 1x416+x2 by trigonometric substitution?

1 Answer
Mar 23, 2018

The answer is =16+x2256x(x2+16)32768x3+C

Explanation:

Let x=4tanθ, , dx=4sec2θdθ

16+x2=16+16tan2θ=4secθ

Therefore, the integral is

I=dxx416+x2=4sec2θdθ256tan4θ4secθ

=1256secθdθtan4θ

tanθ=sinθcosθ

secθ=1cosθ

I=1256dθcosθsin4θcos4θ

=1256cos3θdθsin4θ

=1256cosθ(1sin2θ)dθsin4θ

Let v=sinθ, , dv=cosθdθ

I=1256(1v2)dvv4

=1256(1v41v2)dv

=125613v3+1256(1v)

=12561sinθ17681sin3θ

=12561x16+x217681x3(x2+16)32+C

=16+x2256x(x2+16)32768x3+C