How do you integrate x3√144−x2?
1 Answer
Aug 23, 2015
Use substitution with
Explanation:
Let
=−12∫x2√144−x2 (−2x)dx
=−12∫144−u√u du
=−12∫(144√u−√u) du
=−12∫(144u−12−u12) du
=−12[288u12−23u32]+C
=−144(144−x2)12+13(144−x2)32+C
=−144√144−x2+13(√144−x2)3+C