How do you integrate int 1/sqrt(4x^2+12x-5) 14x2+12x5 using trigonometric substitution?

1 Answer
Jun 4, 2018

int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (2x+3+sqrt(4x^2+12x-5))+Cdx4x2+12x5=12ln2x+3+4x2+12x5+C

Explanation:

Complete the square at the denominator:

int dx/sqrt(4x^2+12x-5) = int dx/sqrt((2x+3)^2-14) = 1/sqrt14 int dx/sqrt(((2x+3)/sqrt14)^2-1)dx4x2+12x5=dx(2x+3)214=114dx(2x+314)21

Substitute for (2x+3)/sqrt 14 > 12x+314>1

(2x+3)/sqrt14 = sect2x+314=sect

dx = sqrt14/2 sect tantdtdx=142secttantdt

with t in (0,pi/2)t(0,π2)

so that:

int dx/sqrt(4x^2+12x-5) = 1/2 int (sect tant dt)/sqrt(sec^2t -1)dx4x2+12x5=12secttantdtsec2t1

Now:

sqrt(sec^2t -1) = sqrt(1/cos^2t -1) = sqrt((1-cos^2t)/cos^2t) = sqrt(sin^2t/cos^2t) = sqrt(tan^2t) = tantsec2t1=1cos2t1=1cos2tcos2t=sin2tcos2t=tan2t=tant

as for t in (0,pi/2)t(0,π2) the tangent is positive.

So:

int dx/sqrt(4x^2+12x-5) = 1/2 int (sect tant dt)/tant dx4x2+12x5=12secttantdttant

int dx/sqrt(4x^2+12x-5) = 1/2 int sect dt dx4x2+12x5=12sectdt

int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (sect+tant)+Cdx4x2+12x5=12ln|sect+tant|+C

int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (sect+sqrt(sec^2t-1))+Cdx4x2+12x5=12lnsect+sec2t1+C

Undoing the substitution:

int dx/sqrt(4x^2+12x-5) = 1/2 ln abs ((2x+3)/sqrt14+sqrt(((2x+3)/sqrt14)^2-1))+Cdx4x2+12x5=12ln∣ ∣2x+314+(2x+314)21∣ ∣+C

int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (2x+3+sqrt(4x^2+12x-5))+Cdx4x2+12x5=12ln2x+3+4x2+12x5+C

and by differentiating we can verify that the solution is valid also for (2x+3)/sqrt14 < -12x+314<1.