Complete the square at the denominator:
int dx/sqrt(4x^2+12x-5) = int dx/sqrt((2x+3)^2-14) = 1/sqrt14 int dx/sqrt(((2x+3)/sqrt14)^2-1)∫dx√4x2+12x−5=∫dx√(2x+3)2−14=1√14∫dx√(2x+3√14)2−1
Substitute for (2x+3)/sqrt 14 > 12x+3√14>1
(2x+3)/sqrt14 = sect2x+3√14=sect
dx = sqrt14/2 sect tantdtdx=√142secttantdt
with t in (0,pi/2)t∈(0,π2)
so that:
int dx/sqrt(4x^2+12x-5) = 1/2 int (sect tant dt)/sqrt(sec^2t -1)∫dx√4x2+12x−5=12∫secttantdt√sec2t−1
Now:
sqrt(sec^2t -1) = sqrt(1/cos^2t -1) = sqrt((1-cos^2t)/cos^2t) = sqrt(sin^2t/cos^2t) = sqrt(tan^2t) = tant√sec2t−1=√1cos2t−1=√1−cos2tcos2t=√sin2tcos2t=√tan2t=tant
as for t in (0,pi/2)t∈(0,π2) the tangent is positive.
So:
int dx/sqrt(4x^2+12x-5) = 1/2 int (sect tant dt)/tant ∫dx√4x2+12x−5=12∫secttantdttant
int dx/sqrt(4x^2+12x-5) = 1/2 int sect dt ∫dx√4x2+12x−5=12∫sectdt
int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (sect+tant)+C∫dx√4x2+12x−5=12ln|sect+tant|+C
int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (sect+sqrt(sec^2t-1))+C∫dx√4x2+12x−5=12ln∣∣sect+√sec2t−1∣∣+C
Undoing the substitution:
int dx/sqrt(4x^2+12x-5) = 1/2 ln abs ((2x+3)/sqrt14+sqrt(((2x+3)/sqrt14)^2-1))+C∫dx√4x2+12x−5=12ln∣∣
∣∣2x+3√14+√(2x+3√14)2−1∣∣
∣∣+C
int dx/sqrt(4x^2+12x-5) = 1/2 ln abs (2x+3+sqrt(4x^2+12x-5))+C∫dx√4x2+12x−5=12ln∣∣2x+3+√4x2+12x−5∣∣+C
and by differentiating we can verify that the solution is valid also for (2x+3)/sqrt14 < -12x+3√14<−1.