Integrate int x/sqrt(1+x^2) dx by Trigonometric substitution
Solution:
Let x=tan theta
Let x^2=tan^2 theta
Let dx=sec^2 theta* d theta
int x/sqrt(1+x^2) dx=int (tan theta*sec^2 theta* d theta)/sqrt(1+tan^2 theta)=int (tan theta*sec^2 theta* d theta)/sqrt(sec^2 theta)
int x/sqrt(1+x^2) dx=int (tan theta*sec^2 theta* d theta)/sec theta
int x/sqrt(1+x^2) dx=int tan theta*sec theta* d theta
int x/sqrt(1+x^2) dx=int (sin theta/cos theta*1/cos theta)* d theta
int x/sqrt(1+x^2) dx=int sin theta/cos^2 theta d theta
int x/sqrt(1+x^2) dx=int cos^(-2) theta*sin theta* d theta
int x/sqrt(1+x^2) dx=-int cos^(-2) theta*(-sin theta)* d theta
int x/sqrt(1+x^2) dx=- (cos theta)^(-2+1)/(-2+1)
int x/sqrt(1+x^2) dx=(cos theta)^(-1)=sec theta
Our Right Triangle with acute angle theta
tan theta=x/1
sec theta=sqrt(1+x^2)/1
int x/sqrt(1+x^2) dx=(cos theta)^(-1)=sec theta=sqrt(1+x^2)/1
Therefore
int x/sqrt(1+x^2) dx=sqrt(1+x^2)+C
God bless....I hope the explanation is useful.