How do you integrate int x /sqrt(1 + x^2) dx using trigonometric substitution?

1 Answer

int x/sqrt(1+x^2) dx=sqrt(1+x^2)+C

Explanation:

Integrate int x/sqrt(1+x^2) dx by Trigonometric substitution

Solution:

Let x=tan theta
Let x^2=tan^2 theta
Let dx=sec^2 theta* d theta

int x/sqrt(1+x^2) dx=int (tan theta*sec^2 theta* d theta)/sqrt(1+tan^2 theta)=int (tan theta*sec^2 theta* d theta)/sqrt(sec^2 theta)

int x/sqrt(1+x^2) dx=int (tan theta*sec^2 theta* d theta)/sec theta

int x/sqrt(1+x^2) dx=int tan theta*sec theta* d theta

int x/sqrt(1+x^2) dx=int (sin theta/cos theta*1/cos theta)* d theta

int x/sqrt(1+x^2) dx=int sin theta/cos^2 theta d theta

int x/sqrt(1+x^2) dx=int cos^(-2) theta*sin theta* d theta

int x/sqrt(1+x^2) dx=-int cos^(-2) theta*(-sin theta)* d theta

int x/sqrt(1+x^2) dx=- (cos theta)^(-2+1)/(-2+1)

int x/sqrt(1+x^2) dx=(cos theta)^(-1)=sec theta

Our Right Triangle with acute angle theta

tan theta=x/1

sec theta=sqrt(1+x^2)/1

int x/sqrt(1+x^2) dx=(cos theta)^(-1)=sec theta=sqrt(1+x^2)/1

Therefore

int x/sqrt(1+x^2) dx=sqrt(1+x^2)+C

God bless....I hope the explanation is useful.