How do you calculate 6dx4(x1)2?

1 Answer
Apr 3, 2015

Answer is:
6sin1(x12)+c

To me the me the easiest way to evaluate this is to use a substitution that takes sinx
Because 11x2dx=sin1(x)+c
Right?

**To Evaluate : ** 614(x1)2dx

step1:

let x1=2sinθdxdθ=2cosθdx=2cosθdθ

so that,

(x1)2=4sin2θ

4(x1)2=44sin2θ

4(x1)2=44sin2(θ)=4(1sin2θ)=4cos2θ
=2cosθ

14(x1)2=12cosθ

614(x1)2dx=612cosθ2cosθdθ

=6dθ=6θ+c
Remember that x1=2sinθθ=sin1(x12)

6θ+c=6sin1(x12)+c