How do you integrate int 1/(x^2sqrt(4+x^2)) by trigonometric substitution?

1 Answer
Apr 8, 2018

The answer is =-sqrt(4+x^2)/(4x)+C

Explanation:

Perform this integral by substitution

Let x=2tanu, =>, dx=2sec^2udu

sqrt(4+x^2)=sqrt(4+4tan^2u)=2secu

The integral is

I=int(2sec^2udu)/(4tan^2u*2secu)

=1/4int(sec udu)/(tan^2u)

=1/4int(cosu du)/(sin^2u)

Let v=sinu, =>, dv=cosu du

Therefore,

I=1/4int(dv)/(v^2)

=1/4*-(1/v)

=-1/(4sinu)

=-1/(4*x/(sqrt(x^2+4)))

=-sqrt(4+x^2)/(4x)+C