How do you evaluate the integral ∫2x2+x−5(x−3)(x+2)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Feb 19, 2018 ∫2x2+x−5x2−x−6⋅dx=2x+2ln(x−3)−ln(x+2)+C Explanation: ∫2x2+x−5x2−x−6⋅dx =∫2dx+∫x+7x2−x−6⋅dx =2x+∫x+7(x−3)⋅(x+2)⋅dx =2x+∫2x+4(x−3)(x+2)⋅dx-∫x−3(x−3)(x+2)⋅dx =2x+∫2dxx−3-∫dxx+2 =2x+2ln(x−3)−ln(x+2)+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1414 views around the world You can reuse this answer Creative Commons License