How do you integrate dxx2+2x using trig substitutions?

1 Answer
Mar 29, 2018

The answer is =ln(x2+2x+x+1)+C

Explanation:

Complete the square in the denominator

x2+2x=x2+2x+11=(x+1)21

Let x+1=secu, , dx=secutanudu

Therefore, the integral is

I=dxx2+2x=dx(x+1)21

=secutanudutan2u

=(secudu)

=secu(tanu+secu)dutanu+secu

Let v=tanu+secu, , dv=(secutanu+sec2u)du

Therefore,

I=dvv

=lnv

=ln(tanu+secu)

=ln((x+1)21+x+1)+C

=ln(x2+2x+x+1)+C