How do you integrate #int 1/(4x^2-9)^(3/2)# by trigonometric substitution?
1 Answer
Nov 26, 2016
Explanation:
#intdx/(4x^2-9)^(3/2)#
Let
#=1/2int(2dx)/((2x)^2-9)^(3/2)#
#=1/2int(3secthetatanthetad theta)/(9sec^2theta-9)^(3/2)#
Factoring
#=1/2int(3secthetatantheta)/(27(sec^2theta-1)^(3/2))d theta#
Since
#=1/18int(secthetatantheta)/tan^3thetad theta#
#=1/18intsectheta/tan^2thetad theta#
#=1/18intcostheta/sin^2thetad theta#
Letting
#=1/18intu^-2du#
#=-1/(18u)#
#=-1/18csctheta#
#=-1/18sectheta/tantheta#
#=-1/54(3sectheta)/sqrt(sec^2theta-1)#
#=-3/54(3sectheta)/sqrt(9sec^2theta-9)#
Using
#=-1/18(2x)/sqrt(4x^2-9)#
#=(-x)/(9sqrt(4x^2-9))+C#