How do you integrate ∫1(4x2−9)32 by trigonometric substitution?
1 Answer
Nov 26, 2016
Explanation:
∫dx(4x2−9)32
Let
=12∫2dx((2x)2−9)32
=12∫3secθtanθdθ(9sec2θ−9)32
Factoring
=12∫3secθtanθ27(sec2θ−1)32dθ
Since
=118∫secθtanθtan3θdθ
=118∫secθtan2θdθ
=118∫cosθsin2θdθ
Letting
=118∫u−2du
=−118u
=−118cscθ
=−118secθtanθ
=−1543secθ√sec2θ−1
=−3543secθ√9sec2θ−9
Using
=−1182x√4x2−9
=−x9√4x2−9+C