How do you integrate 1(4x29)32 by trigonometric substitution?

1 Answer
Nov 26, 2016

x94x29+C

Explanation:

dx(4x29)32

Let 2x=3secθ such that 2dx=3secθtanθdθ.

=122dx((2x)29)32

=123secθtanθdθ(9sec2θ9)32

Factoring 932=27 from the denominator:

=123secθtanθ27(sec2θ1)32dθ

Since sec2θ1=tan2θ:

=118secθtanθtan3θdθ

=118secθtan2θdθ

=118cosθsin2θdθ

Letting u=sinθ so du=cosθdθ.

=118u2du

=118u

=118cscθ

=118secθtanθ

=1543secθsec2θ1

=3543secθ9sec2θ9

Using 3secθ=2x:

=1182x4x29

=x94x29+C