How do you find the Integral of dx√x2+16? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Jim H Mar 30, 2015 ∫dx√x2+16dx=∫14√(x4)2+1dx =∫1√(x4)2+1(14)dx u=x4, du=14dx and ∫1√u2+1du=sinh−1u+C So ∫dx√x2+16dx=sinh−1(x4)+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6074 views around the world You can reuse this answer Creative Commons License