How do you evaluate 4x2x2?

1 Answer
Feb 1, 2017

The integral equals 4x2xarcsin(x2)+C

Explanation:

Use trigonometric substitution. We have an integral with a square root of the form a2x2. Therefore, use the substitution x=asinθ.

In our case, a=2. Our substitution will therefore be x=2sinθ. Then dx2cosθdθ.

4(2sinθ)2(2sinθ)22cosθdθ

44sin2θ4sin2θ2cosθdθ

4(1sin2θ)4sin2θ2cosθdθ

Use sin2x+cos2x=1:

4cos2θ4sin2θ2cosθdθ

2cosθ4sin2θ2cosθdθ

4cos2θ4sin2θdθ

cos2θsin2θdθ

Use cotx=1tanx=1sinxcosx=cosxsinx:

cot2θdθ

Use cot2x+1=csc2x:

csc2θ1dθ

csc2θdθ1dθ

These are both trivial integrals.

cotθθ+C

We know from our original substitution that x2=sinθ. We can deduce that θ=arcsin(x2). Therefore, the side adjacent θ is 4x2 in measure. Thus, cotθ=4x2x.

4x2xarcsin(x2)+C

Hopefully this helps!