\int_(0)^(15)x^2\sqrt(a^2-x^2)dx?

I got as far as \inta^4\sin^4(\theta)\cos^2(theta)d\theta from trigonometric substitution with

x=a\sin(\theta)
dx=a\cos(\theta)d\theta

NOTE

The original integral looked like this

\int_(0)^(a)x^2\sqrt(a^2-x^2)dx

In this version, the upper integration limit is a, not 15.

1 Answer
Apr 15, 2018

int_0^a x^2sqrt(a^2-x^2)dx = (a^4pi)/16

Explanation:

Evaluate:

int_0^a x^2sqrt(a^2-x^2)dx

Substitute:

x= asint

dx = a costdt

with t in [0,pi/2]

so that:

int_0^a x^2sqrt(a^2-x^2)dx = int_0^(pi/2) a^2 sin^2t sqrt(a^2-a^2 sin^2t)acostdt

int_0^a x^2sqrt(a^2-x^2)dx = a^4 int_0^(pi/2) sin^2t sqrt(1- sin^2t)costdt

For t in [0,pi/2] the cosine os positive, so:

sqrt(1- sin^2t) = cost

and then:

int_0^a x^2sqrt(a^2-x^2)dx = a^4 int_0^(pi/2) sin^2t cos^2tdt

Use now the trigonometric identities:

sin 2theta = 2 sin theta cos theta

2sin^2 theta = 1- cos theta

so:

sin^2t cos^2tdt = 1/4 sin^2 2t = 1/8(1-cos4t)

and:

int_0^a x^2sqrt(a^2-x^2)dx = a^4/8 int_0^(pi/2) (1-cos4t)dt

Using now the linearity of the integral:

int_0^a x^2sqrt(a^2-x^2)dx = a^4/8 (int_0^(pi/2) dt - int_0^(pi/2) cos4tdt)

int_0^a x^2sqrt(a^2-x^2)dx = a^4/8 [t - (sin 4t)/4]_0^(pi/2)

int_0^a x^2sqrt(a^2-x^2)dx = (a^4pi)/16