#intx^3(x^2+4)^(1/2)dx=intx^3sqrt((x^2+4))dx#
let #x=2tan(theta)#
#dx=2sec(theta)^2d theta#
So :
#intx^3(x^2+4)^(1/2)dx=int16tan(theta)^3sqrt((4tan(theta)^2+4))sec(theta)^2d theta#
#=16inttan(theta)^3sqrt(4(tan(theta)^2+1))sec(theta)^2d theta#
#=32inttan(theta)^3cancel(sqrt(tan(theta)^2+1))^(color(red)(=sec(theta)))sec(theta)^2d theta#
#=32inttan(theta)^3sec(theta)^3d theta#
#=32int(sin(theta)^3)/(cos(theta)^6)d theta#
#=-32int(-sin(theta)sin(theta)^2)/(cos(theta)^6)d theta#
#=-32int(-sin(theta)(1-cos(theta)^2))/(cos(theta)^6)d theta#
let #u=cos(theta)#
#du=-sin(theta)d theta#
So : #32inttan(theta)^3sec(theta)^3d theta=-32int(1-u^2)/(u^6)du#
#=32intu^(-4)du-32intu^(-6)du#
#=32/5u^(-5)-32/3u^(-3)#
#=32/5cos(theta)^(-5)-32/3cos(theta)^-3#
Finally, because #theta=arctan(x/2)# and #cos(arctan(x/2))=2/sqrt(4+x^2)#,
#intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)#
\0/ Here's our answer !