intx^3(x^2+4)^(1/2)dx=intx^3sqrt((x^2+4))dx∫x3(x2+4)12dx=∫x3√(x2+4)dx
let x=2tan(theta)x=2tan(θ)
dx=2sec(theta)^2d thetadx=2sec(θ)2dθ
So :
intx^3(x^2+4)^(1/2)dx=int16tan(theta)^3sqrt((4tan(theta)^2+4))sec(theta)^2d theta∫x3(x2+4)12dx=∫16tan(θ)3√(4tan(θ)2+4)sec(θ)2dθ
=16inttan(theta)^3sqrt(4(tan(theta)^2+1))sec(theta)^2d theta=16∫tan(θ)3√4(tan(θ)2+1)sec(θ)2dθ
=32inttan(theta)^3cancel(sqrt(tan(theta)^2+1))^(color(red)(=sec(theta)))sec(theta)^2d theta
=32inttan(theta)^3sec(theta)^3d theta
=32int(sin(theta)^3)/(cos(theta)^6)d theta
=-32int(-sin(theta)sin(theta)^2)/(cos(theta)^6)d theta
=-32int(-sin(theta)(1-cos(theta)^2))/(cos(theta)^6)d theta
let u=cos(theta)
du=-sin(theta)d theta
So : 32inttan(theta)^3sec(theta)^3d theta=-32int(1-u^2)/(u^6)du
=32intu^(-4)du-32intu^(-6)du
=32/5u^(-5)-32/3u^(-3)
=32/5cos(theta)^(-5)-32/3cos(theta)^-3
Finally, because theta=arctan(x/2) and cos(arctan(x/2))=2/sqrt(4+x^2),
intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)
\0/ Here's our answer !