Using trigonometric substitution, how do you integrate integral of x^3 (x^2+4)^(1/2) x3(x2+4)12?

1 Answer
Jul 21, 2018

intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)x3(x2+4)12dx=15(4+x2)24+x243(4+x2)4+x2

See explanations below.

Explanation:

intx^3(x^2+4)^(1/2)dx=intx^3sqrt((x^2+4))dxx3(x2+4)12dx=x3(x2+4)dx

let x=2tan(theta)x=2tan(θ)

dx=2sec(theta)^2d thetadx=2sec(θ)2dθ

So :

intx^3(x^2+4)^(1/2)dx=int16tan(theta)^3sqrt((4tan(theta)^2+4))sec(theta)^2d thetax3(x2+4)12dx=16tan(θ)3(4tan(θ)2+4)sec(θ)2dθ

=16inttan(theta)^3sqrt(4(tan(theta)^2+1))sec(theta)^2d theta=16tan(θ)34(tan(θ)2+1)sec(θ)2dθ

=32inttan(theta)^3cancel(sqrt(tan(theta)^2+1))^(color(red)(=sec(theta)))sec(theta)^2d theta

=32inttan(theta)^3sec(theta)^3d theta

=32int(sin(theta)^3)/(cos(theta)^6)d theta

=-32int(-sin(theta)sin(theta)^2)/(cos(theta)^6)d theta

=-32int(-sin(theta)(1-cos(theta)^2))/(cos(theta)^6)d theta

let u=cos(theta)
du=-sin(theta)d theta

So : 32inttan(theta)^3sec(theta)^3d theta=-32int(1-u^2)/(u^6)du

=32intu^(-4)du-32intu^(-6)du

=32/5u^(-5)-32/3u^(-3)

=32/5cos(theta)^(-5)-32/3cos(theta)^-3

Finally, because theta=arctan(x/2) and cos(arctan(x/2))=2/sqrt(4+x^2),

intx^3(x^2+4)^(1/2)dx=1/5(4+x^2)^2sqrt(4+x^2)-4/3(4+x^2)sqrt(4+x^2)

\0/ Here's our answer !