Let e^x=4tanuex=4tanu then e^xdx=4sec^2uduexdx=4sec2udu and
dx=(4sec^2u)/(4tanu)dudx=4sec2u4tanudu -as e^x=4tanuex=4tanu
and sqrt(e^(2x)+16)=sqrt(16tan^2u+16)=4secu√e2x+16=√16tan2u+16=4secu
Hence inte^x/sqrt(e^(2x)+16)dx∫ex√e2x+16dx
= int(4tanu)/(4secu)(4sec^2u)/(4tanu)du∫4tanu4secu4sec2u4tanudu
= intsecudu∫secudu
= ln|secu+tanu|+c_1ln|secu+tanu|+c1
= ln|sqrt(tan^2u+1)+tanu|+c_1ln∣∣√tan2u+1+tanu∣∣+c1
= ln|sqrt(e^(2x)+16)/4+e^x/4|+c_1ln∣∣∣√e2x+164+ex4∣∣∣+c1
= ln|sqrt(e^(2x)+16)+e^x|+cln∣∣√e2x+16+ex∣∣+c, where cc is another constant.