How do you integrate int (e^x)/sqrt(e^(2x) +16)dxexe2x+16dx using trigonometric substitution?

1 Answer
Mar 14, 2018

inte^x/sqrt(e^(2x)+16)dx=ln|sqrt(e^(2x)+16)+e^x|+cexe2x+16dx=lne2x+16+ex+c

Explanation:

Let e^x=4tanuex=4tanu then e^xdx=4sec^2uduexdx=4sec2udu and

dx=(4sec^2u)/(4tanu)dudx=4sec2u4tanudu -as e^x=4tanuex=4tanu

and sqrt(e^(2x)+16)=sqrt(16tan^2u+16)=4secue2x+16=16tan2u+16=4secu

Hence inte^x/sqrt(e^(2x)+16)dxexe2x+16dx

= int(4tanu)/(4secu)(4sec^2u)/(4tanu)du4tanu4secu4sec2u4tanudu

= intsecudusecudu

= ln|secu+tanu|+c_1ln|secu+tanu|+c1

= ln|sqrt(tan^2u+1)+tanu|+c_1lntan2u+1+tanu+c1

= ln|sqrt(e^(2x)+16)/4+e^x/4|+c_1lne2x+164+ex4+c1

= ln|sqrt(e^(2x)+16)+e^x|+clne2x+16+ex+c, where cc is another constant.