How do you integrate int 1/sqrt(x^2-9x+8) using trigonometric substitution?

2 Answers
Apr 22, 2018

I=int1/sqrt(x^2-9x+8)dx=int1/sqrt((x-9/2)^2-(7/2)^2)dx
We know that, int1/sqrt(X^2-A^2)dX=ln|X+sqrt(X^2-A^2)|+c
Put,X=x-9/2,andA=7/2,then simplify,term in sq.rt.
I=ln|(x-9/2)+sqrt(x^2-9x+8)|+C

Explanation:

Without Trig.Subst. answer ,see above.

With Trig. Subst. answer, see below.

Decide yourself ,which method is better.

We have, x^2-9x+color(red)8=x^2-9x+color(red)(32/4)=x^2- 9x+color(red)(81/4-49/4)

:.x^2-9x+8=(x-9/2)^2-(7/2)^2

#i.e.I=int1/sqrt((x-9/2)^2-(7/2)^2)dx#

Let, x-9/2=7/2secu=>dx=7/2secutanudu

So,

I=int(7/2secutanu)/sqrt((7/2secu)^2-(7/2)^2)du

=int(7/2secutanu)/(7/2sqrt(tan^2u))du

=int(secutanu)/tanudu

=intsecudu

=ln|secu+tanu|+c

=ln|secu+sqrt(sec^2u-1)|+c,to[where,secu=(x-9/2)/(7/2)]

=ln|(x-9/2)/(7/2)+sqrt(((x-9/2)/(7/2))^2-1)|+c

=ln|(x-9/2)/(7/2)+sqrt((x-9/2)^2-(7/2)^2)/(7/2)|+c

=ln|(x-9/2)/(7/2)+sqrt(x^2-9x+8)/(7/2)|+c

=ln|(x-9/2+sqrt(x^2-9x+8))/(7/2)|+c

=ln|x-9/2+sqrt(x^2-9x+8)|-ln(7/2)+c

=ln|x-9/2+sqrt(x^2-9x+8)|+C,where,C=c-ln(7/2)

Apr 22, 2018

=> cosh^(-1) ((2x-9)/7 ) + c

Explanation:

=> int 1/ ( sqrt(( x-9/2)^2 -49/4 )

=> u = (2x-9) / 7

=> dx = 7/2 du

=> int 7 / sqrt( 49u^2 - 49 ) dx

=> int 1/ sqrt(u^2 -1 ) du

=> u = cosh theta

=> du = sinh theta d theta

=> int (sinh theta d theta ) /sqrt(cosh^2 theta -1)

=> int d theta

=> theta + c

=> cosh ^(-1)u + c

=> cosh^(-1) ((2x-9)/7 ) + c