23int1/sqrt(13+3x^2)dx23∫1√13+3x2dx
x = sqrt(13/3)ux=√133u
dx = sqrt(13/3)dudx=√133du
u = sqrt(3/13)xu=√313x
23sqrt(13/3)int 1/sqrt(13+13u^2)du 23√133∫1√13+13u2du
23sqrt(13/3)*sqrt(1/13)int 1/sqrt(1+u^2)du 23√133⋅√113∫1√1+u2du
23sqrt(1/3)[arcsinh(u)]+C23√13[arcsinh(u)]+C
Substitute back
23sqrt(1/3)[arcsinh(sqrt(3/13)x)]+C23√13[arcsinh(√313x)]+C