How do you evaluate #int cosx/(1+sin^2x)# from #[0, pi/2]#?
1 Answer
Nov 9, 2016
Explanation:
First examining without the bounds:
#I=intcosx/(1+sin^2x)dx#
Let
#I=intsec^2theta/(1+tan^2theta)d theta=intd theta=theta+C#
Since
#I=arctan(sinx)+C#
Adding the bounds:
#I_B=int_0^(pi/2)cosx/(1+sin^2x)dx=[arctan(sinx)]_0^(pi/2)#
#color(white)(I_B)=arctan(sin(pi/2))-arctan(sin(0))#
#color(white)(I_B)=arctan(1)-arctan(0)#
#color(white)(I_B)=pi/4-0#
#color(white)(I_B)=pi/4#