How do you evaluate #int cosx/(1+sin^2x)# from #[0, pi/2]#?

1 Answer
Nov 9, 2016

#intcosx/(1+sin^2x)dx=pi/4#

Explanation:

First examining without the bounds:

#I=intcosx/(1+sin^2x)dx#

Let #sinx=tantheta#. This may look like a wild substitution, but the goal is to get the denominator of the fraction to #1+tan^2theta=sec^2theta#. Note that differentiating #sinx=tantheta# gives #cosxdx=sec^2thetad theta#. It's also helpful that #cosxdx# is already present in the integrand. Substituting these in:

#I=intsec^2theta/(1+tan^2theta)d theta=intd theta=theta+C#

Since #sinx=tantheta#, we see that #theta=arctan(sinx)#:

#I=arctan(sinx)+C#

Adding the bounds:

#I_B=int_0^(pi/2)cosx/(1+sin^2x)dx=[arctan(sinx)]_0^(pi/2)#

#color(white)(I_B)=arctan(sin(pi/2))-arctan(sin(0))#

#color(white)(I_B)=arctan(1)-arctan(0)#

#color(white)(I_B)=pi/4-0#

#color(white)(I_B)=pi/4#