How do you use trig substitution to evaluate integral xx2+x+1dx?

1 Answer
Apr 9, 2018

xx2+x+1dx=x2+x+112ln2x+1+2x2+x+1+C

Explanation:

Write the numerator of integrand as:

x=12(2x+1)12

and note that:

ddx(x2+x+1)=2x+1

Then:

xx2+x+1dx=122x+1x2+x+1dx12dxx2+x+1

xx2+x+1dx=12d(x2+x+1)x2+x+1dx12dxx2+x+1

xx2+x+1dx=x2+x+112dxx2+x+1

Solve now the resulting integral by completing the square at the denominator:

12dxx2+x+1=12dx(x+12)2+34

12dxx2+x+1=dx(2x+1)2+3

Substitute now:

2x+1=3tant with t(π2,π2)

dx=32sec2tdt

to have:

12dxx2+x+1=32sec2tdt3tan2t+3

12dxx2+x+1=12sec2tdttan2t+1

Use the trigonometric identity:

tan2t+1=sec2t

and as for t(π2,π2) the secant is positive:

tan2t+1=sect

Then:

12dxx2+x+1=12sec2tdtsect

12dxx2+x+1=12sectdt

12dxx2+x+1=12ln|sect+tant|+C

and undoing the substitution:

12dxx2+x+1=12ln∣ ∣2x+13+(2x+1)23+1∣ ∣+C

12dxx2+x+1=12ln(2x+1)+(2x+1)2+3+C

12dxx2+x+1=12ln2x+1+2x2+x+1+C

Putting the partial solutions together:

xx2+x+1dx=x2+x+112ln2x+1+2x2+x+1+C