Use the Trigonometric substitution
e^x = 9* sin theta
e^x dx = 9* cos theta dtheta
e^(2x)= 81 sin^2 theta
dx=(9cos theta)/(9sin theta dtheta
dx=cos theta/sin theta dtheta
int 1/sqrt(81-e^(2x))dx
int 1/sqrt(81-81 sin ^2 theta)cos theta/sin theta dtheta
int 1/(sqrt(81)*sqrt(1-sin ^2 theta))cos theta/sin theta dtheta
int 1/(9sqrt(cos ^2 theta))cos theta/sin theta dtheta
1/9* int csc theta dtheta
1/9*ln(csc theta - cot theta)+C
1/9*ln(9/e^x-sqrt(81-e^(2x))/e^x)+C
1/9*ln((9-sqrt(81-e^(2x)))/e^x)+C
1/9*(ln(9-sqrt(81-e^(2x)))-ln e^x)+C
1/9*(ln(9-sqrt(81-e^(2x)))-x)+C
1/9*ln(9-sqrt(81-e^(2x)))-x/9+C