How do you integrate int 1/sqrt(-e^(2x) +81)dx using trigonometric substitution?

1 Answer

int 1/sqrt(-e^(2x) + 81) = 1/9 ln(9-sqrt(81-e^(2x)))-x/9+C

Explanation:

Use the Trigonometric substitution

e^x = 9* sin theta

e^x dx = 9* cos theta dtheta

e^(2x)= 81 sin^2 theta

dx=(9cos theta)/(9sin theta dtheta

dx=cos theta/sin theta dtheta

int 1/sqrt(81-e^(2x))dx

int 1/sqrt(81-81 sin ^2 theta)cos theta/sin theta dtheta

int 1/(sqrt(81)*sqrt(1-sin ^2 theta))cos theta/sin theta dtheta

int 1/(9sqrt(cos ^2 theta))cos theta/sin theta dtheta

1/9* int csc theta dtheta

1/9*ln(csc theta - cot theta)+C

1/9*ln(9/e^x-sqrt(81-e^(2x))/e^x)+C

1/9*ln((9-sqrt(81-e^(2x)))/e^x)+C

1/9*(ln(9-sqrt(81-e^(2x)))-ln e^x)+C

1/9*(ln(9-sqrt(81-e^(2x)))-x)+C

1/9*ln(9-sqrt(81-e^(2x)))-x/9+C