How do you integrate int x/sqrt(144-x^2)dx using trigonometric substitution?

1 Answer
Dec 14, 2015

Sub x = 12sinu.

Restrict -frac{pi}{2}<\u<=frac{pi}{2}.

Note that cosu>=0.

frac{dx}{du} = 12cosu

int frac{x}{sqrt(144-x^2)} dx = int frac{12sinu}{sqrt(144-(12sinu)^2)} * frac{dx}{du} du

= int frac{12sinu}{sqrt{144(1-sin^2u)}} * (12cosu) du

= int frac{12sinucosu}{sqrt{cos^2u}} du

= 12 int sinu du

= -12 cosu + C , where C is the constant of integration.

= -sqrt{144-(12sinu)^2} + C

= -sqrt{144-x^2} + C