How do you integrate int x/sqrt(144-x^2)dx using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Bio Dec 14, 2015 Sub x = 12sinu. Restrict -frac{pi}{2}<\u<=frac{pi}{2}. Note that cosu>=0. frac{dx}{du} = 12cosu int frac{x}{sqrt(144-x^2)} dx = int frac{12sinu}{sqrt(144-(12sinu)^2)} * frac{dx}{du} du = int frac{12sinu}{sqrt{144(1-sin^2u)}} * (12cosu) du = int frac{12sinucosu}{sqrt{cos^2u}} du = 12 int sinu du = -12 cosu + C , where C is the constant of integration. = -sqrt{144-(12sinu)^2} + C = -sqrt{144-x^2} + C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 2535 views around the world You can reuse this answer Creative Commons License