How do you integrate int x / sqrt(-x^2+8x-32) dxxx2+8x32dx using trigonometric substitution?

1 Answer

-4i* ln ((x-4+sqrt(x^2-8x+32))/4)-i*sqrt(x^2-8x+32)4iln(x4+x28x+324)ix28x+32 where i = sqrt(-1)i=1

Explanation:

The solution is really quite long but there is a solution;
start with a Right triangle.
with acute angle thetaθ
side opposite to angle thetaθ = (x-4)
side opposite to 90 degree angle= sqrt(x^2-8x+32)x28x+32
side adjacent to thetaθ = 4

Our trigonometric substitution goes like this:
Let x-4 = 4*tan thetax4=4tanθ

and x=4+4*tan thetax=4+4tanθ

also (x-4)^2 = 16 *tan^2 theta(x4)2=16tan2θ

dx = 4* sec^2 thetadx=4sec2θ ddthetaθ

and tan theta = (x-4)/4tanθ=x44

our sec theta = sqrt(x^2 -8x+32)/4secθ=x28x+324

Take note that sqrt(x^2-8x+32) = sqrt((x-4)^2+16)x28x+32=(x4)2+16

from the given:
intx/sqrt(-x^2+8x-32) dxxx2+8x32dx

int x/sqrt(-(x^2-8x+16+16)) dxx(x28x+16+16)dx

int x/sqrt(-((x-4)^2+16)) dxx((x4)2+16)dx

from the above it follows

int ((4+4*tan theta) * 4 sec^2 theta )/sqrt(-1(16*tan^2 theta+16)(4+4tanθ)4sec2θ1(16tan2θ+16) ddthetaθ

int (4(1+tan theta) * 4 sec^2 theta )/(sqrt(-1) *sqrt(16*tan^2 theta+16))4(1+tanθ)4sec2θ116tan2θ+16 ddthetaθ

int (4(1+tan theta) * 4 sec^2 theta )/(sqrt(-1) *sqrt(16)*sqrt(tan^2 theta+1))4(1+tanθ)4sec2θ116tan2θ+1 ddthetaθ

int (4(1+tan theta) * sec^2 theta )/(sqrt(-1) *sqrt(tan^2 theta+1))4(1+tanθ)sec2θ1tan2θ+1 ddthetaθ

but sqrt(tan^2 theta+1) = sec thetatan2θ+1=secθ

int (4(1+tan theta) * sec^2 theta )/(sqrt(-1) *sec theta)4(1+tanθ)sec2θ1secθ ddthetaθ

then int (4(1+tan theta) * sec theta )/(sqrt(-1) )4(1+tanθ)secθ1 ddthetaθ

it follows int (4(sec theta+tan theta sec theta) )/(sqrt(-1) )4(secθ+tanθsecθ)1 ddthetaθ

and (4/sqrt(-1))int sec theta(41)secθ ddthetaθ + (4/sqrt(-1)) int tan theta sec theta(41)tanθsecθ ddtheta θ

but sqrt(-1) = i1=i and i^2 = -1 i2=1

(4/sqrt(-1)*sqrt(-1)/sqrt(-1))int sec theta(4111)secθ ddthetaθ + (4/sqrt(-1)*sqrt(-1)/sqrt(-1)) int tan theta sec theta(4111)tanθsecθ ddtheta θ

((4i)/(-1))int sec theta(4i1)secθ ddthetaθ + ((4i)/(-1)) int tan theta sec theta(4i1)tanθsecθ ddtheta θ

after integration using the basic formulas

((4i)/-1)ln (sec theta + tan theta)(4i1)ln(secθ+tanθ) + ((4i)/-1) sec theta (4i1)secθ

returning to our original variables and simplifying, it follows,

-4i* ln ((x-4+sqrt(x^2-8x+32))/4)-i*sqrt(x^2-8x+32)4iln(x4+x28x+324)ix28x+32