The solution is really quite long but there is a solution;
start with a Right triangle.
with acute angle thetaθ
side opposite to angle thetaθ = (x-4)
side opposite to 90 degree angle= sqrt(x^2-8x+32)√x2−8x+32
side adjacent to thetaθ = 4
Our trigonometric substitution goes like this:
Let x-4 = 4*tan thetax−4=4⋅tanθ
and x=4+4*tan thetax=4+4⋅tanθ
also (x-4)^2 = 16 *tan^2 theta(x−4)2=16⋅tan2θ
dx = 4* sec^2 thetadx=4⋅sec2θ ddthetaθ
and tan theta = (x-4)/4tanθ=x−44
our sec theta = sqrt(x^2 -8x+32)/4secθ=√x2−8x+324
Take note that sqrt(x^2-8x+32) = sqrt((x-4)^2+16)√x2−8x+32=√(x−4)2+16
from the given:
intx/sqrt(-x^2+8x-32) dx∫x√−x2+8x−32dx
int x/sqrt(-(x^2-8x+16+16)) dx∫x√−(x2−8x+16+16)dx
int x/sqrt(-((x-4)^2+16)) dx∫x√−((x−4)2+16)dx
from the above it follows
int ((4+4*tan theta) * 4 sec^2 theta )/sqrt(-1(16*tan^2 theta+16)∫(4+4⋅tanθ)⋅4sec2θ√−1(16⋅tan2θ+16) ddthetaθ
int (4(1+tan theta) * 4 sec^2 theta )/(sqrt(-1) *sqrt(16*tan^2 theta+16))∫4(1+tanθ)⋅4sec2θ√−1⋅√16⋅tan2θ+16 ddthetaθ
int (4(1+tan theta) * 4 sec^2 theta )/(sqrt(-1) *sqrt(16)*sqrt(tan^2 theta+1))∫4(1+tanθ)⋅4sec2θ√−1⋅√16⋅√tan2θ+1 ddthetaθ
int (4(1+tan theta) * sec^2 theta )/(sqrt(-1) *sqrt(tan^2 theta+1))∫4(1+tanθ)⋅sec2θ√−1⋅√tan2θ+1 ddthetaθ
but sqrt(tan^2 theta+1) = sec theta√tan2θ+1=secθ
int (4(1+tan theta) * sec^2 theta )/(sqrt(-1) *sec theta)∫4(1+tanθ)⋅sec2θ√−1⋅secθ ddthetaθ
then int (4(1+tan theta) * sec theta )/(sqrt(-1) )∫4(1+tanθ)⋅secθ√−1 ddthetaθ
it follows int (4(sec theta+tan theta sec theta) )/(sqrt(-1) )∫4(secθ+tanθsecθ)√−1 ddthetaθ
and (4/sqrt(-1))int sec theta(4√−1)∫secθ ddthetaθ + (4/sqrt(-1)) int tan theta sec theta(4√−1)∫tanθsecθ ddtheta θ
but sqrt(-1) = i√−1=i and i^2 = -1 i2=−1
(4/sqrt(-1)*sqrt(-1)/sqrt(-1))int sec theta(4√−1⋅√−1√−1)∫secθ ddthetaθ + (4/sqrt(-1)*sqrt(-1)/sqrt(-1)) int tan theta sec theta(4√−1⋅√−1√−1)∫tanθsecθ ddtheta θ
((4i)/(-1))int sec theta(4i−1)∫secθ ddthetaθ + ((4i)/(-1)) int tan theta sec theta(4i−1)∫tanθsecθ ddtheta θ
after integration using the basic formulas
((4i)/-1)ln (sec theta + tan theta)(4i−1)ln(secθ+tanθ) + ((4i)/-1) sec theta (4i−1)secθ
returning to our original variables and simplifying, it follows,
-4i* ln ((x-4+sqrt(x^2-8x+32))/4)-i*sqrt(x^2-8x+32)−4i⋅ln(x−4+√x2−8x+324)−i⋅√x2−8x+32