What is the antiderivative of sec^5xtan^7xsec5xtan7x?
1 Answer
Mar 22, 2015
The answer is:
Remembering that:
sec^2x=1/cos^2x=(sin^2x+cos^2x)/cos^2x=sec2x=1cos2x=sin2x+cos2xcos2x=
-
intsecxtanxdx=secx+c∫secxtanxdx=secx+c ; -
int[f(x)]^n*f'(x)dx=[f(x)]^(n+1)/(n+1)+c .
Than: