How do you findint x/sqrt((x^2-4x+9) )dx x(x24x+9)dx using trigonometric substitution?

2 Answers
Apr 4, 2018

:. I=2ln|{(x-2)+sqrt(x^2-4x+9)}/sqrt5|+sqrt(x^2-4x+9)+C.

Explanation:

Let, I=intx/sqrt(x^2-4x+9)dx=intx/sqrt{(x-2)^2+(sqrt5)^2}dx.

So, we use the subst. (x-2)=sqrt5tany.

:. x=2+sqrt5tany, and, dx=sqrt5sec^2ydy.

:. I=int{(2+sqrt5tany)(sqrt5sec^2y)}/sqrt(5tan^2y+5)dy,

=int{(2+sqrt5tany)(sqrt5sec^2y)}/(sqrt5secy)dy,

=int{(2+sqrt5tany)secy}dy,

=2intsecydy+sqrt5intsecytanydy,

=2ln|(secy+tany)|+sqrt5secy.

Note that, (x-2)=sqrt5tany rArr tany=(x-2)/sqrt5, and,

sqrt(x^2-4x+9)=sqrt5secy.

:. I=2ln|{(x-2)+sqrt(x^2-4x+9)}/sqrt5|+sqrt(x^2-4x+9)+C.

Feel & Spread The Joy of Maths.!

Apr 4, 2018

I=sqrt(x^2-4x+9)+2ln|(x-2)+sqrt(x^2-4x+9)|+c
Please see the answer given by Mr.Ratnaker Maheta for trig.substitution: (x-2)=sqrt5tany.

Explanation:

Here,

I=intx/sqrt(x^2-4x+9)dx

=1/2int(2x)/sqrt(x^2-4x+9)dx

=1/2int(2x-4+4)/sqrt(x^2-4x+9)dx

=1/2int(2x-4)/sqrt(x^2-4x+9)dx+1/2int(4)/sqrt(x^2-4x+9)dx

=1/2int(d/(dx)(x^2-4x+9))/sqrt(x^2-4x+9)dx+4/2int(1)/sqrt(x^2- 4x+4+5)dx

Applying color(red)((1) given below,

=1/2*2sqrt(x^2-4x+9)+2int1/sqrt((x-2)^2+(sqrt5)^2)dx

Applying color(red)((2) given below

=sqrt(x^2-4x+9)+2ln|(x-2)+sqrt((x-2)^2+(sqrt5)^2)|+c

I=sqrt(x^2-4x+9)+2ln|(x-2)+sqrt(x^2-4x+9)|+c

Hint:

color(red)((1)int(d/(dx)(f(x)))/sqrt(f(x))dx=2sqrt(f(x))+c

color(red)((2)int1/sqrt(X^2+A^2)dx=ln|X+sqrt(X^2+A^2)|+c