How do you integrate int x^2sin^2x?

1 Answer
Nov 8, 2017

(x^3)/6+(x*cos2x)/4-(x^2-2)*(sin2x)/4+C

Explanation:

int x^2*(sinx)^2*dx

=1/2*int x^2*(1-cos2x)*dx

=int (x^2*dx)/2-1/2*int x^2*cos2x*dx

After using tabular integration for second integral.

int x^2*cos2x*dx

=x^2*(sin2x)/2-2x*(cos2x)/(-4)+2*(sin2x)/(-8)

=(2x^2-4)*(sin2x)/4+(x*cos2x)/2

Thus,

int x^2*(sinx)^2*dx

=(x^3)/6+C-1/2*[(2x^2-4)*(sin2x)/4+(x*cos2x)/2]

=(x^3)/6+(x*cos2x)/4-(x^2-2)*(sin2x)/4+C