How do you evaluate the integral (secx tanx) / (sec^2(x) - secx) dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer maganbhai P. May 10, 2018 I=ln|1-cosx|+c Explanation: We know that, color(red)((1)tanx=sinx/cosx and secx= 1/cosx Here, I=int(secxtanx)/(sec^2x-secx)dx =int(cancelsecxtanx)/(cancelsecx(secx-1))dx =inttanx/(secx-1)dx =int(sinx/cosx)/(1/cosx-1)dx...tocolor(red)(Apply(1) I=intsinx/(1-cosx)dx Let, 1-cosx=u=>sinxdx=du I=int1/udu =ln|u|+c, where, u=1-cosx I=ln|1-cosx|+c Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 10965 views around the world You can reuse this answer Creative Commons License