How do you evaluate the integral (secx tanx) / (sec^2(x) - secx) dx?

1 Answer
May 10, 2018

I=ln|1-cosx|+c

Explanation:

We know that,
color(red)((1)tanx=sinx/cosx and secx= 1/cosx
Here,

I=int(secxtanx)/(sec^2x-secx)dx

=int(cancelsecxtanx)/(cancelsecx(secx-1))dx

=inttanx/(secx-1)dx

=int(sinx/cosx)/(1/cosx-1)dx...tocolor(red)(Apply(1)

I=intsinx/(1-cosx)dx

Let,

1-cosx=u=>sinxdx=du

I=int1/udu

=ln|u|+c, where, u=1-cosx

I=ln|1-cosx|+c