How do you integrate int x / sqrt(16+x^2) dxx16+x2dx using trigonometric substitution?

1 Answer
Apr 9, 2018

intx/sqrt(16+x^2)dx=ln|sqrt(x^2+16)+x|+Cx16+x2dx=lnx2+16+x+C

Explanation:

For integrals involving the root sqrt(x^2+a^2),x2+a2, we can use the substitution x=atanthetax=atanθ. Here, a^2=16, a=4, x=4tanthetaa2=16,a=4,x=4tanθ

So, dx=4sec^2thetad thetadx=4sec2θdθ and we can apply the substitution.

int(4sec^2theta)/sqrt(16+16tan^2theta)d theta=int(4sec^2theta)/(sqrt(16(1+tan^2theta)))d theta4sec2θ16+16tan2θdθ=4sec2θ16(1+tan2θ)dθ

=intsec^2theta/sqrt(1+tan^2theta)d theta=sec2θ1+tan2θdθ

Recalling the identity 1+tan^2theta=sec^2theta,1+tan2θ=sec2θ,

=intsec^2theta/sqrt(sec^2theta)d theta=sec2θsec2θdθ

=intsec^cancel(2)theta/cancel(secthetad) theta

=intsecthetad theta=ln|sectheta+tantheta|+C

This is a fairly common integral, it should be memorized. We need things in terms of x. Recalling that x=4tantheta, tantheta=x/4.

We still need the secant in terms of x. Applying the identity 1+tan^2theta=sec^2theta:

16/16+x^2/16=sec^2theta

sectheta=sqrt(x^2+16)/4

Thus, we have

ln|(sqrt(x^2+16)+x)/4|+C=ln|sqrt(x^2+16)+x|-ln(4)+C

We may absorb the ln4 into the constant of integration. We're left with

intx/sqrt(16+x^2)dx=ln|sqrt(x^2+16)+x|+C