How do you integrate 1x3+x2dx using trigonometric substitution?

1 Answer
Mar 18, 2018

The answer is =ln(x3+x2+3)+C

Explanation:

The denominator is

x3+x2=x 3(1+(x3)2)

=3x (1+(x3)2)

Perform the substitution

x3=tanθ

dx3=sec2θdθ

 (1+(x3)2)=1+tan2θ=sec2θ=secθ

Therefore, the integral is

I=dxx3+x2=3sec2θdθ3tanθsecθ

=secθdθtanθ

=dθsinθ

=(cscθdθ)

=cscθ(cscθ+cotθ)dθcscθ+cotθ

=(csc2θ+cscθcotθ)dθcscθ+cotθ

Perform the substitution

v=cscθ+cotθ, , dv=(cotθcscθcsc2θ)dθ

Therefore,

I=dvv

=ln(v)

=ln(cscθ+cotθ)

tanθ=x3, , cscθ=3+x2x

tanθ=x3, , cotθ=3x

Finally,

I=ln(3+x2x+3x)

=ln(3+x2+3x)

=ln(x3+x2+3)+C