How do you integrate ∫√5−4x−x2dx using trigonometric substitution?
1 Answer
Explanation:
We have:
I=∫√5−4x−x2dx=∫√−(x+2)2+9dx
From here, let
I=3∫cosθ√−9sin2θ+9dθ
Factoring a
I=9∫cosθ√−sin2θ+1dθ
Recall that since
I=9∫cos2θdθ
Recall that
I=92∫(cos2θ+1)dθ=92∫cos2θdθ+92∫dθ
The first integral can be approached with substitution, or just the reverse chain rule. The second is simple:
I=94∫2cos2θdθ+92θ=94sin2θ+92θ
Using
I=92sinθcosθ+92θ
Writing all in terms of sine:
I=92sinθ√1−sin2θ+92θ
Recall that
I=92(x+23)√1−(x+23)2+92arcsin(x+23)
I=3(x+2)2√9−(x+2)29+92arcsin(x+23)
The
I=x+22√9−(x+2)2+92arcsin(x+23)
I=(x+2)√5−4x−x2+9arcsin(x+23)2+C