How do you integrate #int sqrt(5-4x-x^2) dx# using trigonometric substitution?
1 Answer
Explanation:
We have:
#I=intsqrt(5-4x-x^2)dx=intsqrt(-(x+2)^2+9)dx#
From here, let
#I=3intcosthetasqrt(-9sin^2theta+9)d theta#
Factoring a
#I=9intcosthetasqrt(-sin^2theta+1)d theta#
Recall that since
#I=9intcos^2thetad theta#
Recall that
#I=9/2int(cos2theta+1)d theta=9/2intcos2thetad theta+9/2intd theta#
The first integral can be approached with substitution, or just the reverse chain rule. The second is simple:
#I=9/4int2cos2thetad theta+9/2theta=9/4sin2theta+9/2theta#
Using
#I=9/2sinthetacostheta+9/2theta#
Writing all in terms of sine:
#I=9/2sinthetasqrt(1-sin^2theta)+9/2theta#
Recall that
#I=9/2((x+2)/3)sqrt(1-((x+2)/3)^2)+9/2arcsin((x+2)/3)#
#I=(3(x+2))/2sqrt((9-(x+2)^2)/9)+9/2arcsin((x+2)/3)#
The
#I=(x+2)/2sqrt(9-(x+2)^2)+9/2arcsin((x+2)/3)#
#I=((x+2)sqrt(5-4x-x^2)+9arcsin((x+2)/3))/2+C#