How do you integrate ∫1√4x+8√x+12 using trigonometric substitution?
1 Answer
Explanation:
We have:
∫dx√4x+8√x+12
Factor
=12∫dx√x+2√x+3
Complete the square in the denominator. Think about it in terms of
=12∫dx√(√x+1)2+2
Now, let
Rearranging some:
=∫√xdx2√x√(√x+1)2+2
Now, performing the substitutions. We have
=∫(√2tanθ−1)√2sec2θdθ√2tan2θ+2
Factoring
=∫(√2tanθ−1)√2sec2θ√2secθdθ
=∫(√2tanθ−1)secθdθ
=√2∫tanθsecθdθ−∫secθdθ
Both of which are common integrals:
=√2secθ−ln(|secθ+tanθ|)
Write
=√2√tan2θ+1−ln(∣∣√tan2θ+1+tanθ∣∣)
Using
=√2√(√x+1)22+1−ln⎛⎜⎝∣∣ ∣∣√(√x+1)22+1+√x+1√2∣∣ ∣∣⎞⎟⎠
=√2√(√x+1)2+22−ln⎛⎜⎝∣∣ ∣∣√(√x+1)2+22+√x+1√2∣∣ ∣∣⎞⎟⎠
=√(√x+1)2+2−ln⎛⎜ ⎜⎝∣∣ ∣ ∣∣√(√x+1)2+2+√x+1√2∣∣ ∣ ∣∣⎞⎟ ⎟⎠
Note that the
=√x+2√x+3−ln(∣∣√x+√x+2√x+3+1∣∣)+C