How do you integrate int 1/sqrt(-e^(2x)+12e^x-45)dx using trigonometric substitution?

2 Answers
Mar 29, 2018

need double check. I'm not absolute sure..but I hope this helps

Explanation:

First of all we need to rearrange the expresion under square root.

Lets do z=e^x. With this we have

sqrt(-z^2+12z-45)=sqrt(-(z^2-12z+45). Now lets complete the square under square root

sqrt(-((z-6)^2-36+45))=sqrt(-((z-6)^2+9))

Now lets do the variable change z-6=3tanr. With this change we have

sqrt(-((z-6)^2+9))=sqrt(-(9tan^2r+9))=sqrt(-9)sqrt(tan^2r+1)

and dz=sec^2rdr

We know that sqrt(-9)=3i and tan^2r+1=sec^2r

Now we have finally

int1/(3isecr)sec^2rdr=int1/(3i)secrdr=1/(3i)intsecrdr

Mar 29, 2018

int \ 1/sqrt(-e^(2x)+12e^x-45) \ dx = i/(3sqrt(5)) ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - i/(3sqrt(5))ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1| + C

Explanation:

We seek:

I = int \ 1/sqrt(-e^(2x)+12e^x-45) \ dx

The denominator is quadratic in e^x, so can complete the square to get:

I = int \ 1/sqrt((-1)(e^(2x)-12e^x+45)) \ dx
\ \ = int \ 1/sqrt((-1)((e^(x)-6)^2-6^2+45)) \ dx
\ \ = int \ 1/(sqrt(-1)sqrt((e^(x)-6)^2-36+45)) \ dx
\ \ = int \ 1/(sqrt((e^(x)-6)^2+9)) * 1/i dx
\ \ = int \ 1/sqrt((e^(x)-6)^2+9) * 1/i * i/i dx
\ \ = -i \ int \ 1/sqrt((e^(x)-6)^2+9) dx
\ \ = -i \ I_1, where I_1 = int \ 1/sqrt((e^(x)-6)^2+9) dx

Note that the denominator is positive AA x in RR, so we do not get a real solution.

To proceed with the integral, I_1, we can perform a substitution, Let:

e^x-6 = 3tan theta => e^x = 3tan theta+6

And if we differentiate wrt x we get:

e^x = 3sec^2 theta (d theta)/dx => (d theta)/dx = (3tan theta+6)/(3sec^2 theta)

And substituting into the integral I_1 we get:

I_1 = int \ 1/sqrt((3tan theta )^2+9) (3sec^2 theta)/(3tan theta + 6 ) \ d theta

\ \ \ = int \ 1/sqrt(9(tan^2 theta + 1)) (3sec^2 theta)/(3(tan theta + 2) ) \ d theta

\ \ \ = int \ 1/sqrt(9(sec^2theta)) (sec^2 theta)/((tan theta + 2) ) \ d theta

\ \ \ = 1/3 \ int \ (sec theta)/(tan theta + 2 ) \ d theta

Next, we can perform a tangent half angle (Weierstrass substitution), so that:

t=tan(theta/2) => theta=2arctant

And we find that:

sin theta=(2t)/(1+t^2), cos theta = (1-t^2)/(1+t^2) and (d theta)/dt=2/(1+t^2)

Thus we can perform a second substitution:

I_1 = 1/3 \ int \ (1/cos theta)/((sin theta/cos theta) + 2 ) \ d theta

\ \ \ = 1/3 \ int \ ((1+t^2)/(1-t^2))/(((2t)/(1+t^2))((1+t^2)/(1-t^2)) + 2 ) \ 2/(1+t^2) \ dt

\ \ \ = 1/3 \ int \ (2/(1-t^2))/ ( (2t)/(1-t^2) + 2 ) \ dt

\ \ \ = 1/3 \ int \ (1/(1-t^2))/ ( (t + (1-t^2))/(1-t^2) ) \ dt

\ \ \ = -1/3 \ int \ 1/(t^2-t - 1) \ dt

This integrand, is now significantly simplified, and we can use partial fraction decomposition (skipped) toi write in the form:

I_1 = -1/3 2/sqrt(5){int 1/(2t-sqrt(5)-1) - 1/(2t+sqrt(5)-1) \ dt }

Which we can now evaluate, to get:

I_1 = -1/(3sqrt(5)){ln|2t-sqrt(5)-1| - ln|2t+sqrt(5)-1|}

We can then restore the t substitution, using t=tan(theta/2), to get:

I_1 = -1/(3sqrt(5)){ln|2tan(theta/2)-sqrt(5)-1| - ln|2tan(theta/2)+sqrt(5)-1|}

And we can restore the theta substitution using the relationship, , theta = arctan(1/3(e^x-6)) from which we get:

tan(theta/2) = (3(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)

And so we get:

I_1 = -1/(3sqrt(5)){ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1|}

Thus:

I = i/(3sqrt(5)) ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - i/(3sqrt(5))ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1| + C