How do you integrate int 1/sqrt(-e^(2x)+12e^x-45)dx using trigonometric substitution?
2 Answers
need double check. I'm not absolute sure..but I hope this helps
Explanation:
First of all we need to rearrange the expresion under square root.
Lets do
Now lets do the variable change
and
We know that
Now we have finally
int \ 1/sqrt(-e^(2x)+12e^x-45) \ dx = i/(3sqrt(5)) ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - i/(3sqrt(5))ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1| + C
Explanation:
We seek:
I = int \ 1/sqrt(-e^(2x)+12e^x-45) \ dx
The denominator is quadratic in
I = int \ 1/sqrt((-1)(e^(2x)-12e^x+45)) \ dx
\ \ = int \ 1/sqrt((-1)((e^(x)-6)^2-6^2+45)) \ dx
\ \ = int \ 1/(sqrt(-1)sqrt((e^(x)-6)^2-36+45)) \ dx
\ \ = int \ 1/(sqrt((e^(x)-6)^2+9)) * 1/i dx
\ \ = int \ 1/sqrt((e^(x)-6)^2+9) * 1/i * i/i dx
\ \ = -i \ int \ 1/sqrt((e^(x)-6)^2+9) dx
\ \ = -i \ I_1 , whereI_1 = int \ 1/sqrt((e^(x)-6)^2+9) dx
Note that the denominator is positive
To proceed with the integral,
e^x-6 = 3tan theta => e^x = 3tan theta+6
And if we differentiate wrt
e^x = 3sec^2 theta (d theta)/dx => (d theta)/dx = (3tan theta+6)/(3sec^2 theta)
And substituting into the integral
I_1 = int \ 1/sqrt((3tan theta )^2+9) (3sec^2 theta)/(3tan theta + 6 ) \ d theta
\ \ \ = int \ 1/sqrt(9(tan^2 theta + 1)) (3sec^2 theta)/(3(tan theta + 2) ) \ d theta
\ \ \ = int \ 1/sqrt(9(sec^2theta)) (sec^2 theta)/((tan theta + 2) ) \ d theta
\ \ \ = 1/3 \ int \ (sec theta)/(tan theta + 2 ) \ d theta
Next, we can perform a tangent half angle (Weierstrass substitution), so that:
t=tan(theta/2) => theta=2arctant
And we find that:
sin theta=(2t)/(1+t^2) ,cos theta = (1-t^2)/(1+t^2) and(d theta)/dt=2/(1+t^2)
Thus we can perform a second substitution:
I_1 = 1/3 \ int \ (1/cos theta)/((sin theta/cos theta) + 2 ) \ d theta
\ \ \ = 1/3 \ int \ ((1+t^2)/(1-t^2))/(((2t)/(1+t^2))((1+t^2)/(1-t^2)) + 2 ) \ 2/(1+t^2) \ dt
\ \ \ = 1/3 \ int \ (2/(1-t^2))/ ( (2t)/(1-t^2) + 2 ) \ dt
\ \ \ = 1/3 \ int \ (1/(1-t^2))/ ( (t + (1-t^2))/(1-t^2) ) \ dt
\ \ \ = -1/3 \ int \ 1/(t^2-t - 1) \ dt
This integrand, is now significantly simplified, and we can use partial fraction decomposition (skipped) toi write in the form:
I_1 = -1/3 2/sqrt(5){int 1/(2t-sqrt(5)-1) - 1/(2t+sqrt(5)-1) \ dt }
Which we can now evaluate, to get:
I_1 = -1/(3sqrt(5)){ln|2t-sqrt(5)-1| - ln|2t+sqrt(5)-1|}
We can then restore the
I_1 = -1/(3sqrt(5)){ln|2tan(theta/2)-sqrt(5)-1| - ln|2tan(theta/2)+sqrt(5)-1|}
And we can restore the
tan(theta/2) = (3(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)
And so we get:
I_1 = -1/(3sqrt(5)){ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1|}
Thus:
I = i/(3sqrt(5)) ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)-sqrt(5)-1| - i/(3sqrt(5))ln|(6(sqrt((e^x-6)^2/9+1)-1))/(e^x-6)+sqrt(5)-1| + C