How do you integrate int 1/sqrt(9x^2-18x+8) using trigonometric substitution?

1 Answer
Mar 9, 2016

1/3 cosh^-1 (3x-3) + C

Explanation:

Since: 9x^2 - 18x + 8 = (3x-3)^2 - 1

We use the following substitution:

  • 3x -3 = cosh u
  • dx = 1/3 (sinh u ) du

Hence:
sqrt(9x^2 - 18x + 8) = sqrt((3x-3)^2 - 1) = sqrt(cosh^2 u - 1) = sqrt(sinh^2 u) = sinh u

So we have:

int 1/sqrt(9x^2 - 18x + 8) dx = int 1/sinhu * 1/3 sinhu * du = 1/3u + C = 1/3 cosh^-1 (3x-3) + C