How do you integrate int 1/(x^2sqrt(4-x^2))1x24x2 by trigonometric substitution?

1 Answer
Jul 26, 2016

int (dx)/(x^2sqrt(4-x^2)) = -(sqrt(4-x^2))/(4x) + Cdxx24x2=4x24x+C

Explanation:

Let x=2sin(u) implies dx = 2cos(u)dux=2sin(u)dx=2cos(u)du

int (dx)/(x^2sqrt(4-x^2)) = int (2cos(u))/(4sin^2(u)sqrt(4 - 4sin^2(u)))dudxx24x2=2cos(u)4sin2(u)44sin2(u)du

= int (2cos(u))/(8sin^2(u)sqrt(1 - sin^2(u)))du=2cos(u)8sin2(u)1sin2(u)du

= int (2cos(u))/(8sin^2(u)sqrt(cos^2(u)))du=2cos(u)8sin2(u)cos2(u)du

= int (2cos(u))/(8sin^2(u)cos(u))du=2cos(u)8sin2(u)cos(u)du

=1/4int (du)/(sin^2(u)) = 1/4int csc^2(u)du=14dusin2(u)=14csc2(u)du

You can look up that the integral of csc^2(x)csc2(x) is equal to -cot(x)cot(x) but we shall derive this anyway.

int csc^2(x)dx = int (dx)/sin^2(x)csc2(x)dx=dxsin2(x)

Divide top and bottom by cos^2(x)cos2(x)

int (sec^2(x))/(tan^2(x))dxsec2(x)tan2(x)dx

Let z = tan(x) implies dz = sec^2(x)dxz=tan(x)dz=sec2(x)dx

int (dz)/(z^2) = -1/z = -1/(tan(x)) = -cot(x)dzz2=1z=1tan(x)=cot(x)

Hence:

1/4int csc^2(u)du = -1/4cot(u) + C14csc2(u)du=14cot(u)+C

u = sin^(-1)(x/2)u=sin1(x2)

therefore I = -1/4cot(sin^(-1)(x/2)) + C

This can look a little scary but it's actually quite simple, we just need to draw a triangle.

Consider y = sin^(-1)(a)

implies a = sin(y)

Sine is Opposite/Hypotenuse so we have triangle with opposite side a and Hypotenuse equal to 1. Can work out the other side with pythagoras' to be sqrt(1-a^2).

Now, the tangent function is opposite/adjacent, hence:

tan(y) = (a)/(sqrt(1-a^2))

cottheta = 1/(tantheta) implies cot(y) = (sqrt(1-a^2))/(a)

enter image source here

So -1/4cot(sin^(-1)(x/2)) = -1/4(sqrt(1-(x/2)^2))/(x/2)

=-1/2(sqrt(1-(x^2/4)))/(x) = -1/4(sqrt(4-x^2))/x = -(sqrt(4-x^2))/(4x)