How do you find the antiderivative of int (csc^3x) dx∫(csc3x)dx?
1 Answer
Explanation:
intcsc^3xdx=intcsc^2xcscxdx∫csc3xdx=∫csc2xcscxdx
Split
{(u=cscx" "=>" "du=-cscxcotxdx),(dv=csc^2x" "=>" "v=-cotx):}
Thus:
intcsc^3xdx=-cscxcotx-intcot^2xcscxdx
Write
intcsc^3xdx=-cscxcotx-int(csc^2x-1)cscxdx
intcsc^3xdx=-cscxcotx-intcsc^3x+intcscxdx
Integrating
intcsc^3xdx=-cscxcotx-intcsc^3xdx-lnabs(cotx+cscx)
Solving for
2intcsc^3xdx=-cscxcotx-lnabs(cotx+cscx)
Dividing both sides by
intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2
Short proof of the integral of cosecant:
intcscxdx=intcscx*(cotx+cscx)/(cotx+cscx)dx=int(cscxcotx+csc^2x)/(cotx+cscx)dx
Let
intcscxdx=-int(dv)/v=-lnabsv+C=-lnabs(cotx+cscx)+C