How do you find the antiderivative of int (csc^3x) dx(csc3x)dx?

1 Answer
Oct 22, 2016

intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2csc3xdx=cscxcotxln|cotx+cscx|2

Explanation:

intcsc^3xdx=intcsc^2xcscxdxcsc3xdx=csc2xcscxdx

Split csc^3xcsc3x into a cscxcscx and csc^2xcsc2x term, then use integration by parts. Integration by parts takes the form intudv=uv-intvduudv=uvvdu. Let:

{(u=cscx" "=>" "du=-cscxcotxdx),(dv=csc^2x" "=>" "v=-cotx):}

Thus:

intcsc^3xdx=-cscxcotx-intcot^2xcscxdx

Write cot^2x as csc^2x-1, which arises through the Pythagorean Identity:

intcsc^3xdx=-cscxcotx-int(csc^2x-1)cscxdx

intcsc^3xdx=-cscxcotx-intcsc^3x+intcscxdx

Integrating cscx, which is a common integral (if you don't already know it, a short proof for it is contained at the bottom of this answer):

intcsc^3xdx=-cscxcotx-intcsc^3xdx-lnabs(cotx+cscx)

Solving for intcsc^3xdx by adding it to both sides:

2intcsc^3xdx=-cscxcotx-lnabs(cotx+cscx)

Dividing both sides by 2:

intcsc^3xdx=(-cscxcotx-lnabs(cotx+cscx))/2

" "

" "

Short proof of the integral of cosecant:

intcscxdx=intcscx*(cotx+cscx)/(cotx+cscx)dx=int(cscxcotx+csc^2x)/(cotx+cscx)dx

Let v=cotx+cscx, thus dv=-csc^2x-cscxcotx, which is the opposite of the numerator. Thus

intcscxdx=-int(dv)/v=-lnabsv+C=-lnabs(cotx+cscx)+C