How do you integrate int 1/(x^2sqrt(x^2-7))∫1x2√x2−7 by trigonometric substitution?
1 Answer
Explanation:
I=intdx/(x^2sqrt(x^2-7))I=∫dxx2√x2−7
Apply the substitution
color(white)I=int(sqrt7secthetatanthetad theta)/(7sec^2thetasqrt(7sec^2theta-7))I=∫√7secθtanθdθ7sec2θ√7sec2θ−7
color(white)I=1/7int(tanthetad theta)/(secthetasqrt(sec^2theta-1))I=17∫tanθdθsecθ√sec2θ−1
color(white)I=1/7int(d theta)/secthetaI=17∫dθsecθ
color(white)I=1/7intcosthetad thetaI=17∫cosθdθ
color(white)I=1/7sinthetaI=17sinθ
color(white)I=1/7tantheta/secthetaI=17tanθsecθ
color(white)I=1/7sqrt(sec^2theta-1)/secthetaI=17√sec2θ−1secθ
Using
color(white)I=1/7sqrt(x^2/7-1)/(x/sqrt7)I=17√x27−1x√7
color(white)I=1/7(1/sqrt7sqrt(x^2-7))/(x/sqrt7)I=171√7√x2−7x√7
color(white)I=sqrt(x^2-7)/(7x)+CI=√x2−77x+C