How do you integrate int 1/(x^2sqrt(x^2-7))1x2x27 by trigonometric substitution?

1 Answer
Nov 25, 2016

sqrt(x^2-7)/(7x)+Cx277x+C

Explanation:

I=intdx/(x^2sqrt(x^2-7))I=dxx2x27

Apply the substitution x=sqrt7sectheta,dx=sqrt7secthetatanthetad thetax=7secθ,dx=7secθtanθdθ.

color(white)I=int(sqrt7secthetatanthetad theta)/(7sec^2thetasqrt(7sec^2theta-7))I=7secθtanθdθ7sec2θ7sec2θ7

color(white)I=1/7int(tanthetad theta)/(secthetasqrt(sec^2theta-1))I=17tanθdθsecθsec2θ1

color(white)I=1/7int(d theta)/secthetaI=17dθsecθ

color(white)I=1/7intcosthetad thetaI=17cosθdθ

color(white)I=1/7sinthetaI=17sinθ

color(white)I=1/7tantheta/secthetaI=17tanθsecθ

color(white)I=1/7sqrt(sec^2theta-1)/secthetaI=17sec2θ1secθ

Using x=sqrt7sectheta=>sectheta=x/sqrt7x=7secθsecθ=x7:

color(white)I=1/7sqrt(x^2/7-1)/(x/sqrt7)I=17x271x7

color(white)I=1/7(1/sqrt7sqrt(x^2-7))/(x/sqrt7)I=1717x27x7

color(white)I=sqrt(x^2-7)/(7x)+CI=x277x+C