How do you findint x/sqrt(x^2 + 1) dx using trigonometric substitution? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Mar 12, 2018 int x/sqrt(x^2+1)*dx=sqrt(x^2+1)+C Explanation: int x/sqrt(x^2+1)*dx After using x=tany and dx=(secy)^2*dy transforms, this integral became int tany/sqrt((tany)^2+1)*(secy)^2*dy =int tany/sqrt((secy)^2)*(secy)^2*dy =int ((secy)^2*tany)/secy*dy =int secy*tany*dy =secy+C =sqrt((tany)^2+1)+C =sqrt(x^2+1)+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 1534 views around the world You can reuse this answer Creative Commons License