How do you findint x/sqrt(x^2 + 1) dx using trigonometric substitution?

1 Answer
Mar 12, 2018

int x/sqrt(x^2+1)*dx=sqrt(x^2+1)+C

Explanation:

int x/sqrt(x^2+1)*dx

After using x=tany and dx=(secy)^2*dy transforms, this integral became

int tany/sqrt((tany)^2+1)*(secy)^2*dy

=int tany/sqrt((secy)^2)*(secy)^2*dy

=int ((secy)^2*tany)/secy*dy

=int secy*tany*dy

=secy+C

=sqrt((tany)^2+1)+C

=sqrt(x^2+1)+C