How do you integrate tan3(3x)?

1 Answer
Jan 7, 2017

The answer is =13ln(cos(3x))+16sec2(3x)+C

Explanation:

sec2x=1+tan2x

tan2x=sec2x1

tanx=sinxcosx

secx=1cosx

Let u=3x, , du=3xdx

tan3(3x)dx=13tan3udu

=13(sec2u1)tanudu

=13(1cos2u1)sinucosudu

=131cos2ucos3usinudu

Let v=cosu, , dv=sinudu

Therefore,

=131cos2ucos3usinudu=131v2v3dv

=13v21v3dv

=13(1v1v3)dv

=13(lnv+12v2)

=13(ln(cosu)+12cos2u)

=13(ln(cos(3x))+12cos2(3x))+C

=13ln(cos(3x))+16sec2(3x)+C