How do you integrate ∫tan3(3x)? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Narad T. Jan 7, 2017 The answer is =13ln(∣cos(3x)∣)+16sec2(3x)+C Explanation: sec2x=1+tan2x tan2x=sec2x−1 tanx=sinxcosx secx=1cosx Let u=3x, ⇒, du=3xdx ∫tan3(3x)dx=13∫tan3udu =13∫(sec2u−1)tanudu =13∫(1cos2u−1)⋅sinucosudu =13∫1−cos2ucos3usinudu Let v=cosu, ⇒, dv=−sinudu Therefore, =13∫1−cos2ucos3usinudu=13∫−1−v2v3dv =13∫v2−1v3dv =13∫(1v−1v3)dv =13(lnv+12v2) =13(ln(cosu)+12cos2u) =13(ln(∣cos(3x)∣)+12cos2(3x))+C =13ln(∣cos(3x)∣)+16sec2(3x)+C Answer link Related questions How do you find the integral ∫1x2⋅√x2−9dx ? How do you find the integral ∫x3√x2+9dx ? How do you find the integral ∫x3⋅√9−x2dx ? How do you find the integral ∫x3√16−x2dx ? How do you find the integral ∫√x2−1xdx ? How do you find the integral ∫√x2−9x3dx ? How do you find the integral ∫x√x2+x+1dx ? How do you find the integral ∫dt√t2−6t+13 ? How do you find the integral ∫x⋅√1−x4dx ? How do you prove the integral formula ∫dx√x2+a2=ln(x+√x2+a2)+C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6859 views around the world You can reuse this answer Creative Commons License