sec^2x=1+tan^2x
tan^2x=sec^2x-1
tanx=sinx/cosx
secx=1/cosx
Let u=3x, =>, du=3xdx
inttan^3(3x)dx=1/3inttan^3udu
=1/3int(sec^2u-1)tanudu
=1/3int(1/cos^2u-1)*sinu/cosudu
=1/3int(1-cos^2u)/(cos^3u)sinudu
Let v=cosu, =>, dv=-sinudu
Therefore,
=1/3int(1-cos^2u)/(cos^3u)sinudu=1/3int-(1-v^2)/v^3dv
=1/3int(v^2-1)/v^3dv
=1/3int(1/v-1/v^3)dv
=1/3(lnv+1/(2v^2))
=1/3(ln(cosu)+1/(2cos^2u))
=1/3(ln(∣cos(3x)∣)+1/(2cos^2(3x)))+C
=1/3ln(∣cos(3x)∣)+1/6sec^2(3x)+C