How do you integrate int tan^3(3x)?

1 Answer
Jan 7, 2017

The answer is =1/3ln(∣cos(3x)∣)+1/6sec^2(3x)+C

Explanation:

sec^2x=1+tan^2x

tan^2x=sec^2x-1

tanx=sinx/cosx

secx=1/cosx

Let u=3x, =>, du=3xdx

inttan^3(3x)dx=1/3inttan^3udu

=1/3int(sec^2u-1)tanudu

=1/3int(1/cos^2u-1)*sinu/cosudu

=1/3int(1-cos^2u)/(cos^3u)sinudu

Let v=cosu, =>, dv=-sinudu

Therefore,

=1/3int(1-cos^2u)/(cos^3u)sinudu=1/3int-(1-v^2)/v^3dv

=1/3int(v^2-1)/v^3dv

=1/3int(1/v-1/v^3)dv

=1/3(lnv+1/(2v^2))

=1/3(ln(cosu)+1/(2cos^2u))

=1/3(ln(∣cos(3x)∣)+1/(2cos^2(3x)))+C

=1/3ln(∣cos(3x)∣)+1/6sec^2(3x)+C