What is integral of tan^2(x) sec^4(x) dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Manikandan S. Feb 16, 2015 Another way of seeing this problem I = inttan^2(x)sec^4(x)dx = inttan^2(x)(1+tan^2(x))^2dx u = tan(x) then dx = (du)/(1+u^2) =int(u^2(1+u^2)^2/(1+u^2))du =int(u^2+u^4)du =u^3/3+u^5/5+C I=tan^3(x)/3+tan^5(x)/5+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6935 views around the world You can reuse this answer Creative Commons License