How do you integrate x216x2 using trig substitutions?

1 Answer
Sep 5, 2016

32arcsin(x4)8sin(4arcsin(x4))+C

Explanation:

Solving for:

I=x216x2dx

Make the substitution x=4sinθ where dx=4cosθdθ:

I=16sin2θ1616sin2θ4cosθdθ

Bringing all the multiplicative constants out, including the 16=4:

I=256sin2θcosθ1sin2θdθ

Since sin2θ+cos2θ=1, we see that cosθ=1sin2θ:

I=256sin2θcos2θdθ

Here, since sin2θ=2sinθcosθ, we see that sin22θ=4sin2θcos2θ:

I=644sin2θcos2θdθ

I=64sin22θdθ

Note that, according to the cosine double angle formula, cos4θ=12sin22θ, so sin22θ=1cos4θ2:

I=32(1cos4θ)dθ

I=32dθ32cos4θdθ

Integrating both (substitution can be used for the second integral, or just see it for the reverse chain rule of sin4θ that it is):

I=32θ84cos4θdθ

I=32θ8sin4θ

Since x=4sinθ, solving for θ gives θ=arcsin(x4) and 4θ=4arcsin(x4). Thus:

I=32arcsin(x4)8sin(4arcsin(x4))+C