How do you integrate ∫x2√16−x2 using trig substitutions?
1 Answer
Explanation:
Solving for:
I=∫x2√16−x2dx
Make the substitution
I=∫16sin2θ√16−16sin2θ4cosθdθ
Bringing all the multiplicative constants out, including the
I=256∫sin2θcosθ√1−sin2θdθ
Since
I=256∫sin2θcos2θdθ
Here, since
I=64∫4sin2θcos2θdθ
I=64∫sin22θdθ
Note that, according to the cosine double angle formula,
I=32∫(1−cos4θ)dθ
I=32∫dθ−32∫cos4θdθ
Integrating both (substitution can be used for the second integral, or just see it for the reverse chain rule of
I=32θ−8∫4cos4θdθ
I=32θ−8sin4θ
Since
I=32arcsin(x4)−8sin(4arcsin(x4))+C