How do you integrate int 1/sqrt(9x^2-18x) using trigonometric substitution?
1 Answer
May 26, 2018
Use the substitution
Explanation:
Let
I=int1/sqrt(9x^2-18x)dx
Complete the square in the square root:
I=1/3int1/sqrt((x-1)^2-1)dx
Apply the substitution
I=1/3intsecthetad theta
Integrate directly:
I=1/3ln|sectheta+tantheta|+C
Reverse the substitution:
I=1/3ln|x-1+sqrt(x^2-2x)|+C