How do you integrate #int 1/sqrt(9x^2-18x) # using trigonometric substitution?
1 Answer
May 26, 2018
Use the substitution
Explanation:
Let
#I=int1/sqrt(9x^2-18x)dx#
Complete the square in the square root:
#I=1/3int1/sqrt((x-1)^2-1)dx#
Apply the substitution
#I=1/3intsecthetad theta#
Integrate directly:
#I=1/3ln|sectheta+tantheta|+C#
Reverse the substitution:
#I=1/3ln|x-1+sqrt(x^2-2x)|+C#