How do you integrate [sin(3x)1+cos(3x)+x3e1−x4]dx?
1 Answer
Jun 12, 2016
Explanation:
We have:
∫[sin(3x)1+cos(3x)+x3e1−x4]dx
Split this into two integrals:
=∫sin(3x)1+cos(3x)dx+∫x3e1−x4dx
Examining just the first integral:
Let
We can use substitution: let
A=13∫sin(3x)1+cos(3x)(3)dx=13∫sin(u)1+cos(u)du
We can now use substitution again: let
A=−13∫−sin(u)1+cos(u)du=−13∫dvv
Note that
A=−13ln(|v|)+C=−13ln(|1+cos(u)|)+C
A=−13ln(|1+cos(3x)|)+C
Now, onto the second integral:
Let
Again, we will use substitution: let
B=−14∫−4x3e1−x4dx=−14∫etdt
Note that
B=−14et+C=−14e1−x4+C
Combining
−13ln(|1+cos(3x)|)−14e1−x4+C