How do you integrate [sin(3x)1+cos(3x)+x3e1x4]dx?

1 Answer
Jun 12, 2016

13ln(|1+cos(3x)|)14e1x4+C

Explanation:

We have:

[sin(3x)1+cos(3x)+x3e1x4]dx

Split this into two integrals:

=sin(3x)1+cos(3x)dx+x3e1x4dx

Examining just the first integral:

Let A=sin(3x)1+cos(3x)dx.

We can use substitution: let u=3x, which implies that du=3dx.

A=13sin(3x)1+cos(3x)(3)dx=13sin(u)1+cos(u)du

We can now use substitution again: let v=1+cos(u), which implies that dv=sin(u)du.

A=13sin(u)1+cos(u)du=13dvv

Note that dvv=ln(|v|)+C.

A=13ln(|v|)+C=13ln(|1+cos(u)|)+C

A=13ln(|1+cos(3x)|)+C

Now, onto the second integral:

Let B=x3e1x4dx.

Again, we will use substitution: let t=1x4, implying that dt=4x3dx.

B=144x3e1x4dx=14etdt

Note that etdt=et+C.

B=14et+C=14e1x4+C

Combining A and B, the complete integral is:

13ln(|1+cos(3x)|)14e1x4+C