How do you evaluate the integral #int sqrt(4+x^2)#?

1 Answer
May 29, 2018

# I = x sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C #

Explanation:

#I = int sqrt(4+x^2) color(red)(dx) #

You can use identity:

  • #cosh^2 y - sinh^2 y = 1 implies cosh^2y = 1 + sinh^2 y#

So let:

  • #x^2 = 4 sinh^2 y#

  • #implies 2 x \ dx = 8 sinh y \ cosh y \ dy#

#implies I = int sqrt(4+4 sinh^2 y) \ (8 sinh y \ cosh y \ dy)/(2x)#

# = int 2 cosh y \ (8 sinh y \ cosh y \ dy)/(2* 2 sinh y)#

# =4 int cosh^2 y \ dy #

# =4 int (cosh 2y +1 ) /2\ dy #

# = sinh 2y + 2 y + C qquad triangle #

Considering:

  • #color(red)(sinh 2y = 2 sinh y cosh y )#

  • #x^2 = 4 sinh^2 y implies color(red)( x = 2 sinh y) color(red)(implies y = sinh^(-1) (x/2)) #

  • # cosh^2y = 1 + sinh^2 y implies color(red)(cosh y = sqrt(1 + x^2/4) )#

Then #triangle# becomes:

# I = 2 * x/2 * sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C #

# = x sqrt(1 + x^2/4) + 2 sinh^(-1) (x/2) + C #