How to you integrate (x^2)/(x^2 -4) ^(1/2)x2(x24)12?

1 Answer
Jun 4, 2015

Let's rewrite it like this:

int (x^2)/(sqrt(x^2-4))dxx2x24dx

With this, a^2 = 4a2=4 so a = 2a=2. We have the form:

sqrt(x^2 - a^2)x2a2

which looks like:

sqrt((asectheta)^2 - a^2) = sqrt(a^2sec^2theta - a^2) = asqrt(sec^2theta-1) = atantheta = 2tantheta(asecθ)2a2=a2sec2θa2=asec2θ1=atanθ=2tanθ

So:
Let x = asectheta = 2secthetax=asecθ=2secθ
dx = asecthetatanthetaddx=asecθtanθdtheta = 2secthetatanthetadθ=2secθtanθdthetaθ

int x^2/(sqrt(x^2-4))dx = int (4sec^2theta)/(cancel(2tantheta))*cancel(2)secthetacancel(tantheta)dtheta

= int 4sec^3thetadtheta

= 4int sec^2thetasecthetadtheta

From here, we have a pretty difficult integral... We have to use a trick with integration by parts. Notice how this can be written as:

= 4int (1+tan^2theta)secthetadtheta

Let:
u = sectheta
v = tantheta
du = secthetatanthetadtheta
dv = sec^2thetadtheta

= 4[overbrace(secthetatantheta)^(u*v) - intoverbrace(tantheta)^(v)overbrace(secthetatanthetadɵ)^(du)]

= 4secthetatantheta - 4int(sec^2theta - 1)secthetadtheta

= 4secthetatantheta - 4intsec^3theta - secthetadtheta

= 4secthetatantheta - 4intsec^3thetadtheta + 4intsecthetadtheta

= 4secthetatantheta + 4ln|tantheta+sectheta| - 4intsec^3thetadtheta

where we already are supposed to know that intsecthetadtheta = ln|tantheta+sectheta|. You should have been shown this in class prior to doing this integral.

Now here's the weird part. The whole time we were solving intsec^3thetadtheta, so now we can explicitly say that and use that knowledge.

4int sec^3thetadtheta = 4secthetatantheta + 4ln|tantheta+sectheta| + C - 4intsec^3thetadtheta

8int sec^3thetadtheta = 4secthetatantheta + 4ln|tantheta+sectheta| + C

int sec^3thetadtheta = 1/2secthetatantheta + 1/2ln|tantheta+sectheta| + C

where C is now a new constant, 1/8C, which we don't need to know.

And finally, we can plug things back in.

sectheta = x/2
tantheta = sqrt(x^2-4)/2

We get:

= x/4(sqrt(x^2-4))/2 + 1/2ln|sqrt(x^2-4)/2+x/2| + C