How do you integrate int x /sqrt( 16+x^4 )dx∫x√16+x4dx using trigonometric substitution?
1 Answer
May 19, 2018
Use the substitution
Explanation:
Let
I=intx/sqrt(16+x^4)dxI=∫x√16+x4dx
Apply the substitution
I=1/2intd thetaI=12∫dθ
The integral is trivial:
I=1/2theta+CI=12θ+C
Reverse the substitution:
I=1/2tan^(-1)(x^2/4)+CI=12tan−1(x24)+C