How do you integrate int x /sqrt( 16+x^4 )dxx16+x4dx using trigonometric substitution?

1 Answer
May 19, 2018

Use the substitution x^2=4tanthetax2=4tanθ.

Explanation:

Let

I=intx/sqrt(16+x^4)dxI=x16+x4dx

Apply the substitution x^2=4tanthetax2=4tanθ:

I=1/2intd thetaI=12dθ

The integral is trivial:

I=1/2theta+CI=12θ+C

Reverse the substitution:

I=1/2tan^(-1)(x^2/4)+CI=12tan1(x24)+C