How do you integrate int 1/sqrt(e^(2x) -9)dx1e2x9dx using trigonometric substitution?

1 Answer
Oct 1, 2016

1/3arc sec(e^x/3)+C13arcsec(ex3)+C.

Explanation:

Let I=int1/sqrt(e^(2x)-9)dxI=1e2x9dx

We subst. e^x=3secy," so that, "e^xdx=3sec ytan y dy, i.e., ex=3secy, so that, exdx=3secytanydy,i.e.,

:. 3secydx=3secytanydy, or, dx=tanydy

Also,

e^(2x)-9=(3secy)^2-9=9tan^2y rArr sqrt (e^(2x)-9)=3tany.

Hence, I=int1/(3tany)tanydy=1/3intdy=1/3y

Since, e^x=3secy", we have, "secy=e^x/3, & so, y=arc sec(e^x/3).

Finally, I=1/3arc sec(e^x/3)+C.