How do you find int 1/sqrt(-x^2-4x)1x24x?

2 Answers

\int \frac{1}{\sqrt{-x^2-4x}}dx=\sin^{-1}(\frac{x+2}{2})+C1x24xdx=sin1(x+22)+C

Explanation:

\int \frac{1}{\sqrt{-x^2-4x}}dx1x24xdx

=\int \frac{1}{\sqrt{-x^2-4x-4+4}}dx=1x24x4+4dx

=\int \frac{1}{\sqrt{4-(x^2+4x+4)}}dx=14(x2+4x+4)dx

=\int \frac{1}{\sqrt{4-(x+2)^2}}dx=14(x+2)2dx

Let x+2=2\sin\theta\implies dx=2\cos\theta\ d\theta

=\int \frac{2\cos\theta\d\theta}{\sqrt{4-4\sin^2\theta}}

=\int \frac{2\cos\theta\d\theta}{2\sqrt{1-\sin^2\theta}}

=\int \frac{\cos\theta\d\theta}{\cos\theta}

=\int \ d\theta

=\theta+C

=\sin^{-1}({x+2}/2)+C

Jul 4, 2018

The answer is =arcsin((x+2)/2)+C

Explanation:

The denominator is

sqrt(-x^2-4x)=sqrt(4-(x+2)^2)

Therefore, the integral is

I=int(dx)/(sqrt(-x^2-4x))=int(dx)/sqrt(4-(x+2)^2)

Let u=(x+2)/2

=>, du=1/2dx

Therefore,

I=int(2du)/(sqrt(4-4u^2))= int(du)/(sqrt(1-u^2))

Let u=sintheta, =>, du=costhetad theta

The integral is

I=int(costhetad theta)/costheta

=intd theta

=theta

=arcsinu

=arcsin((x+2)/2)+C