How do you evaluate ∫sinx1+cos2x from [π2,π]?
1 Answer
Jan 9, 2017
Explanation:
I=∫ππ/2sinx1+cos2xdx
We will make the substitution
When making this substitution from
x=π2⇒cos(x)=cos(π2)=0=tan(θ)⇒θ=0 x=π⇒cos(x)=cos(π)=−1=tan(θ)⇒θ=−π4
So:
I=−∫ππ/2−sinx.dx1+cos2x=−∫−π/40sec2θ.dθ1+tan2θ
Reversing the order of the bounds with the negative sign and using the identity
I=∫0−π/4dθ=[θ]0−π/4=0−(−π4)=π4