How do you integrate #sec(x)/(4-3tan(x)) dx#?

1 Answer
Mar 28, 2018

#1/5ln(tan(x/2)+2)-1/5Ln(2tan(x/2)-1)+C#

Explanation:

#int secx/(4-3tanx)*dx#

=#int dx/(4cosx-3sinx)#

After using #y=tan(x/2)#, #dx=(2dy)/(y^2+1)#, #cosx=(1-y^2)/(y^2+1)# and #sinx=(2y)/(y^2+1)# transforms, this integral became

#int ((2dy)/(y^2+1))/(4*(1-y^2)/(y^2+1)-3*(2y)/(y^2+1))#

=#int ((2dy)/(y^2+1))/((4-6y-4y^2)/(y^2^1))#

=-#int dy/(2y^2+3y-2)#

=-#int dy/((y+2)*(2y-1))#

=-#1/5int (5dy)/((y+2)*(2y-1))#

=-#1/5int ((2y+4)*dy)/((y+2)(2y-1))#+#1/5int ((2y-1)*dy)/((y+2)(2y-1))#

=#1/5int dy/(y+2)-2/5 int dy/(2y-1)#

=#1/5ln(y+2)-1/5Ln(2y-1)+C#

=#1/5ln(tan(x/2)+2)-1/5Ln(2tan(x/2)-1)+C#