How do you integrate sec(x)/(4-3tan(x)) dx?

1 Answer
Mar 28, 2018

1/5ln(tan(x/2)+2)-1/5Ln(2tan(x/2)-1)+C

Explanation:

int secx/(4-3tanx)*dx

=int dx/(4cosx-3sinx)

After using y=tan(x/2), dx=(2dy)/(y^2+1), cosx=(1-y^2)/(y^2+1) and sinx=(2y)/(y^2+1) transforms, this integral became

int ((2dy)/(y^2+1))/(4*(1-y^2)/(y^2+1)-3*(2y)/(y^2+1))

=int ((2dy)/(y^2+1))/((4-6y-4y^2)/(y^2^1))

=-int dy/(2y^2+3y-2)

=-int dy/((y+2)*(2y-1))

=-1/5int (5dy)/((y+2)*(2y-1))

=-1/5int ((2y+4)*dy)/((y+2)(2y-1))+1/5int ((2y-1)*dy)/((y+2)(2y-1))

=1/5int dy/(y+2)-2/5 int dy/(2y-1)

=1/5ln(y+2)-1/5Ln(2y-1)+C

=1/5ln(tan(x/2)+2)-1/5Ln(2tan(x/2)-1)+C