int secx/(4-3tanx)*dx
=int dx/(4cosx-3sinx)
After using y=tan(x/2), dx=(2dy)/(y^2+1), cosx=(1-y^2)/(y^2+1) and sinx=(2y)/(y^2+1) transforms, this integral became
int ((2dy)/(y^2+1))/(4*(1-y^2)/(y^2+1)-3*(2y)/(y^2+1))
=int ((2dy)/(y^2+1))/((4-6y-4y^2)/(y^2^1))
=-int dy/(2y^2+3y-2)
=-int dy/((y+2)*(2y-1))
=-1/5int (5dy)/((y+2)*(2y-1))
=-1/5int ((2y+4)*dy)/((y+2)(2y-1))+1/5int ((2y-1)*dy)/((y+2)(2y-1))
=1/5int dy/(y+2)-2/5 int dy/(2y-1)
=1/5ln(y+2)-1/5Ln(2y-1)+C
=1/5ln(tan(x/2)+2)-1/5Ln(2tan(x/2)-1)+C